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Using the proposed heuristics and decomposing the system structure into

suitably sized modules allows simple and intuitive test procedures to be

developed with a miniman amount of computational effort.
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INSPECTION POLICIES FOR FAULT LOCATIO-

by

David A. Butler
Oregon State University

and
Gerald J. Lieberman
Stanford University

0. Abstract

When a system fails it my not be obvious which components are at fault.

" Locating faulty components to be replaced may require a series of inspections

each of which reveals the state (functioning/failed) of one of the components.

The order in which components are inspected and replaced can greatly affect the

cost to restore the system to an operating condition. This paper investigates

inspection sequences for complex coherent systems.

I. Introduction

When a system falls it is seldom obvious which components are at fault.

Locating the faulty parts may require a sequence of tests in each of which the

state (functioning/failed) of one of the components is identified. If the

state of every component oust be determined, then the order in which components

are tested my not matter such. But often testing stops as soon as the first

failed component is found. Or testing may continue until a failed component is

located which, when replaced, fixes the system. (Such a component failure will

±" This research has been partially supported by the Office of Naval Research
under Contracts N00014-79-C-0751 with Oregon State University and
NOOO14-75-C-0561 with Stanford University.
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be called a critical failure.) In these situations the average ==br of tests

carried out depends upon the order In which components are tested.

Butterworth [19721 has developed two fault-testin models for k-out-of-n

- system. In both models components fall independently of one another, each

test costs a given amount, and test procedures are compared by their respective

total expected costs. In the first model, the system is failed and test

procedures must determine the state of each component. In the second model

test procedures must determine the system state. Following Butterworth's

nomenclature, a sequential teat procedure prespecifies the sequence in which

components are tested; in a nonsequential procedure, the outcomes of early

tests my dictate the order of later tests. Sequential test procedures have an

important advantage over npnsequential procedures in that they are uch easier

to specify and to Implement. For determining the system state, Buttervorth

identifies a sequential procedure that is optimal among all procedures,

sequential or not. For determining the component states, the optimal test

procedure Is sequential only for some special cases, among them parallel and

series system. For other k-out-of-n systems the optimal procedure seems to be

neither easily identifiable nor easily implementable. For more complex system

the prospects are even worse. Our emphasis Is, therefore, upon identifying

good, If not optimal, test procedures for general coherent systems.

2. Sequential Test Procedures

The information required to specify a sequential test procedure is mInimal

Just an ordered list of the system's components. In contrast, the amount of

Information necessary to specify a nonsequential policy may be quite large,
~th

because the choice of the n- component to be tested may depend arbitrarily

2
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upon the 2n- 1 possible results of the preceding n-i tests. Unless there is

a simple rule relating this choice to the previous test results, such a

. procedure aight require an inordinate amount of information to be specified

and, thus, be practically Impossible to implement. For this reason we will

focus our attention upon sequential test procedures.

Consider first the situation where testing stops as soon as a failed

J- component is identified. In this case the optimal policy is sequential,

because one knows in advance that all components tested prior to the last one

will be working, and thus, the information known at any stage of testing can be

prespecified. Let 9 - (%I, ... , n) be a permutation of 1, ... , n. The

expected cost of the sequential policy determined by _ is given by

1-1
Its) = c[l + I Pricomponents 1 ,, Sk  are functional

k-i
at time of system failure)]

Thus, in principlep if one can compute the above probabilities, one can

" determine the optimal test policy. In practice, however, these joint condi-

-tional failure probabilities are very hard to determine, and the number of

permutations to be evaluated is very large.

An alternative s to choose a test policy heuristically. One way to do so

is to compte the conditional failure probability of each component given

" system failure, and then to test the component having the highest conditional

failure probability first, the one with the second highest conditional failure

*- probability second, and so on. Although this procedure is not guaranteed to

produce an optimal test policy, it is a reasonable heuristic.

°" 3
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Now consider the case where testing continues until a critically failed

component Is identified. Here testing often continues beyond the first

detected failure, so the information known at any stes of testing cannot be

specified In advance. Thus, the optimal policy Is generally not sequential,

and consequently, Is that such harder to determine. The heuristic procedure

suggested above my also be applied here, subetituting critical failure

probabilities In the selection criterion. As before, the policy it produces

Awill not necessarily be optimal.

We nov turn to the question of bow to effectively compute the

*probabilities on which these heuristics are based.

3. Calculation of Conditional Failure Probabilities for Heuristic Procedures

Consider a coherent system (C, 0) of n components with minimal path

sets pi' ""*' pr. Assume that components fail independently of ome another,
and let 1l() be the time-to-failure distribution of component 1. We assume

a proportional hazards model for component failures, taking

-)4tlCt)
It) "

II

abewhere is a proportionality constant. A practical consequence of this

assumption Is that instead of specifying a different distribution functions.

one need only specify a single hazard function together with a - 1 propor-

tionality constants. In fact, the calculations in this paper will not even

depend upon the hazard function but only the proportional hazards.
Lt - i(t) - (I - 71(t), ..., 1 - 7(t)) denote the vector of compo-

meat reliabilities at a given time t. Let h( p  be the system reliability

.4



and let Ih(i; j) - SbWp)/bp1  be the Birnbaum reliability Importance of

component 1. (Birnbaum [1969)).

Finally$ let

Ah(i) Prlcomponent I is failed at time of system failure)

and

C h(1) - Pr{componeut I is critically failed at tim of system

failure)

• ,A quantity related to Ah(I) and Ch(i) is the arlow-Proechan importance

(Barlow and Proechan [19751),

Sh()- Pr(couponent I causes system failure) •
Uh

(A component Is said to cause system failure If the failure of the system and

the component coincide.) Identifying which component caused system failure

cannot be determined by tests that only revea whether or not a component is

failed and nothing about how recently any failures may have occurred.

' Nonetheless, the causal probabilities can be computed. Barlow and Proechan

[19751 Sive the following formulas for Ph(i):

Ph(i) f ' I ; F(t)dilt )
0

In the case of proportional hasards, a simple change of variable reduces the

formula to



Ph(l )  f 1h(; 0-) kiP dp , (1)
0

where

I p p , I" V ) 2•

A similar formula can be developed for Ah(l ) . NotinS that Ahi) is the

probability that the system functions at least as long as component I does,

h-: (1) f I ll (t))dFrl(t)

0

f h(l I , p-)lp dp
0

X~ -1
f[h(p;L) + p1L0(i; p-)Jlp dp .(2)0

A comparable formula for Ch(i) is more complicated. Suppose path sets

P "" Pk contains component I and Pk+l' ". Pr do not. Let c denote

the coherent system with path sets P1 - (I), P2 - {i), "*'" Pk - {i} and let
r denote the coherent syste with path sets P~ll' "". P " Component i is

critically failed If 1) it causes system failure, or 2) when the syste ulti-

mately falls, there is a minlmam path containing component I havinS the pro-

party that all other components are functioninS. Thus,

C h) "PH(I) + FrlX < 0 Pr,)(3) -t and _ > tdt
h h 0
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Let Zi(, t)- Pri((_) <s and (X) >t) and let si(t) - Zi(o-

In the case of proportional hazards, z (t) can be expressed as a polynomial in

*,- p. 8(P), and Ch(i) reduced toI. h

Ch (i) - Ph(i) + r' FL(t) • zl(t)dt
0

Ph(i) + ( I  ) gi(p)dp . (3)
0

.quations (1), (2) and (3), In principle, allow the three failure-related pro-

babilities Ph(i). A(i) and C(i) to be calculated. However, these

formulas may not be easy to evaluate directly. The integrands are polynomials

In p, but determining the coefficients of these polynomials can be compute-

tionally complex and very time consuming if the system is very large. larlow

and Proschan [1975] have suggested a Monte Carlo approach to approximate the

integral in (1). A similar procedure could be used to evaluate (2) and (3).

As an alternative, e will develop an analytic methodology which exploits the

existence of modules within the coherent system to facilitate the computations.

A module of a coherent system (C, 0) is a subset A of components

organized into som coherent substructure X such that the system performance

depends only upon the components in A through the performance of X, i.e.,

4 7



A cwhere x denotes a vector with components x,, I e A, and A -C -A. The

structure function +, Is called the organizing structure. Sirnbaum [19691

.4

shows that the overall importance of a component within a module is the product

of Its Importance within the module and the importance of the module within the

organizing structure, i.e.,

yX~ 4,1i) ;i) IhM(4

This formula allows the computation of the integrand in (2) to proceed on a

odule-by-module basis instead of having to consider the entire system at

once. This Is a crucial advantage, since the computations involved in

determining h(p), Ih(I; p), or g1 (p) directly grow exponentially with the

number of min paths.

In order to calculate Ch(1) efficiently, a modular decomposition formula

for g1 (p) Is needed.

Proposition:

91(p) 81(p) 1h(K; p) + IV(i; P) %p 5

Proof: Suppose 4o is defined by min paths Pi. ""t P0 " Suppose Pit 0"3 ,
a4,

contain module N and P. 1,"" P. do not. Let denote the structure

function defined by min paths P1 - {P4) ... , P -M{,} and let 4, be the

8A
9%
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K":

structure function defined by P .., P Deflu v *I xadqX

- similarly. These quantities are Interrelated as follow:

i

Let Ti denote the lifetime of component 1, and let

(t I If T > t
t) =M 0 otherwise

z:: ( t)- Pr 1s)) - 0 and ti(ait)) -i)

- ,r[ T,((s)) - ol and it T1(s)) - 0 or , (...) - oJ

and {t(x(t)) - 1) and {,i(x(t)).- }1

* 'V
0.Fr a < t,

i Zi+s.t) -(r,, 1 ((s))- 0 and t!(Am)) - 11

Pr • X,(es)) - 0 and tXxq(t)) -

T x- (8, t) i(8 t)

t) T(t) z( )+ T(t ) M

++9



K- Since for any coherent structure,
Zi(t, t) - Pr{n(X(t)) - 0 and '(X(t)) 1 1)

- h(1i, p: - h(Oi,

I =~ ih~i' p

* the result is established.[0

4. Computational Notes and an Example

A computer program to determine conditional-failure and critical-failure

probabilities has been developed by and is available from the authors. This

program is written in ANSI-Standard FORTRAN and exploits modules to efficiently

compute Ah(i) and Ch(i). The program only allows integer values for the

X*" It is easy to show that if one multiplies each X by a common positive

constant no change to Ah(i) or Ch(i) results. Thus, requiring integer

• values for the X I is not a very severe restriction. The system structure is

entered in a "bottom-up" fashion, with the most elementary modules input first.

The inclusion-exclusion method Is used to compute the reliability h(p) of

each module immediately after it is input. As each h(p) is computed, It(P)

and g (p) are determined also. As modules are input, equations (4) and (5)

are used to determine the overall importance and critical polynomials. Once

all modules have been input, equations (2) and (3) are used to compute Ah(i)
Uh

and Ch(i). Thus, the heuristic sequential inspection policies for the two

optimization criteria may be obtained. Special methods of encoding polynomials

and of sequencing through path subsets are employed to improve speed.

10



To illustrate the efficiency of exploiting modules in -determining these

failure probabilities, consider the following example system.

4 Q

! 2- 6 0

The circled muabers are the failure rates. The table below gives the

conditional-failure and critical-failure probabilities.

i A ( l) Ch(i )

1 0.605 0.350
2 0.385 0.292
3 0.568 0.213
4 0.690 0.213
5 0.729 0.380
6 0.635 0.439
7 0.336 0.046
8 0.368 0.238
9 0.777 0.238
10 0.350 0.122

Optimization Criterion Heuristic Inspection Sequence

first failure 9, 5, 4, 6, 1, 3, 2, 8, 7, 10

first critical failure 6, 5, 1, 2, 8, 9, 3, 4, 10, 7

• C
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To compute the above directly (without breaking down the system into modules)

1required- 10.7 CPU-seconds on a CYBER 73. The most extensive modular decomposi-

tion of the system would be to consider components 3 and 4 as one module,

component 1 and the first module as a second module, components 8 and 9 as a

4third module, and components 2, 5, 6, 7, 10 and modules 2 and 3 as a fourth

module. Utilizing this modular decomposition reduced the computation time by

961 - to 0.4 CPU-seconds.

Although this computer program was developed on a large computer, it

* should be easily adaptable to microcomputers. Almost all of the calculations

* involve integer arithmetic (assuming integer values for the X). Only the

V final polynomial integrations require floating point division. Overall memory

requirements can be large, because each component has associated with it two

polynomials, Y(i; p;-) and g1(p), each of which may have hundreds of terms.

_In addition, each module has associated with it a reliability polynomial,

h(p-) . However, only small portions of this information are needed at any

given time, and so it can be stored on relatively slow-speed media, such as

floppy disks.

5. Conclusions

Locating faulty components in a failed system may require costly

inspections. The total expected cost to find a failed or critically failed

component can be significantly influenced by the order in which components are

Wtested. Determining the optimal inspection sequence is Impractical for all but

the simplest system structures, so heuristic procedures most be used.

12
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Using the proposed heuristics end decomposing the system structure into

suitably sized modules allows simple and intuitive test procedures to be

developed with a minium amount of computational effort.
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